
Understanding the Math behind Neural

Networks
Written Assignment in Algorithmic Gems for AI, Games and Networks

by

Valentin Teutschbein

Tutor

Nadym Mallek

Chair of Algorithm Engineering

Hasso Plattner Institute at University of Potsdam

April 11, 2024

Algorithmic Gems Deep Learning Valentin Teutschbein

1 Table of Contents

Contents

1 Table of Contents 2

2 Introduction 3
2.1 Overview of a Network . 3

3 Forward Propagation 4
3.1 Activation Function . 5

4 Idea of Layers 5

5 Making the Network Learn 6

6 Cost Function 8
6.1 Minimizing a Function . 8
6.2 Gradient Descent . 8

6.2.1 Proof of Gradient Descent Convergence 9
6.3 Backpropagation . 11

7 Training the Network 12
7.1 Learning Algorithm . 13
7.2 Learning Rate . 13
7.3 Demonstration of training a neural network 14
7.4 Further Thoughts . 14

8 Conclusion 15

2

Algorithmic Gems Deep Learning Valentin Teutschbein

2 Introduction

Artificial intelligence (AI) is gaining
steady importance in the field of com-
puter science, with deep learning meth-
ods becoming particularly popular. In
this presentation, you will gain an un-
derstanding of a key component of deep
learning: artificial neural networks and
how to build them. Let’s start by in-
troducing the main ideas behind these
mathematical concepts.
Deep learning is a subset of machine

learning that focuses on solving predic-
tion and classification problems through
a hierarchical learning approach. Vari-
ous methods are employed in deep learn-
ing, and one popular approach is the use

of artificial neural networks, which I will
refer to simply as neural networks in this
presentation. These networks draw in-
spiration from the workings of the hu-
man brain, aiming to replicate its lay-
out and functionality. Neural networks
map input data to output using an algo-
rithm trained on different samples. This
enables them to model unknown data
functions based on examples.
This presentation will specifically

concentrate on feedforward neural net-
works, exploring how these networks
utilize mathematical principles to solve
various classes of problems.

2.1 Overview of a Network

In the picture below a general structure of a neural network is shown:

Figure 1: Concept of a neural network with k layers

As described in the introduction, neu-
ral networks map input data x⃗ to an
output y⃗. This mapping is achieved us-
ing so-called neurons, which are essen-
tially values. In neural networks, we
refer to a neuron’s value as its activa-
tion, denoted by α. As shown in the fig-

ure, these activations are organized into
layers. I’ve used superscripts to index
the layers in this figure. There are three
types of layers: one input layer, an arbi-
trary number of hidden layers, and one
output layer. A neural network is repre-
sented as a layered graph, meaning that

3

Algorithmic Gems Deep Learning Valentin Teutschbein

only neighboring layer neurons are con-
nected to each other.
In reality, there are various struc-

tures of neural networks, some of which
may not be layered graphs. However,
for today’s discussion, we will focus on
some basic network layouts. The con-

nections between neurons are referred to
as weights, denoted by w. For simplic-
ity, this figure does not show biases b,
which are additional values assigned to
each neuron. Notably, biases do not de-
pend on the neuron’s input data or the
values of previous layered neurons.

3 Forward Propagation

Now that we understand that neural
networks model a function for classifica-
tion or prediction purposes, the question
arises: How do they calculate an out-
put with given input data? This calcu-
lation is accomplished through the for-
ward propagation algorithm. To com-
prehend how this algorithm works, let’s
focus on the previously introduced net-
work layout and see how a single acti-
vation value is calculated. For example,
let’s take a closer look at the activation
α1
2 using the figure below:

We start by inserting the input vec-
tor x⃗ into our input layer. This means
that the first activation of the input
layer, α0

0, is set to the first value of
x⃗, α0

1 is set to the second element of
x⃗, and so on. Since our target activa-

tion, α1
2, is in the next layer, we can

directly calculate it from the input layer
activations. We sum up the product
of each input layer neuron times the
weight that connects this input activa-
tion with our α1

2, and finally, we add the
bias connected to α1

2. Now we input this
value into an activation function σ. For
now, we don’t need to understand what
this function does; we will discover that
later on. So, in summary, we have α1

2 =
σ(α0

0·w0;2+α0
1·w1;2+...+α0

n0
·wn0;2+b2) as

our activation value for a given input x⃗.

Task: Implement forward propagation
for the given code snippet below. Use
Python code or pseudocode. If you are
unsure about a behavior, make assump-
tions.

The straightforward solution for this
task would be to build a nested for loop
over each previous activation and the
weights matrix and calculate the linear
dependency, which then becomes the in-
put of our σ activation function. How-
ever, if we imagine our input as a vec-
tor, the weights as a matrix, and our

4

Algorithmic Gems Deep Learning Valentin Teutschbein

biases as a vector, we can further sim-
plify this procedure as the dot prod-
uct σ(Wi · ⃗αi−1 + b⃗i) with Wi being the
weights matrix of the i-th layer, ⃗αi−1 be-
ing the activations vector of the previ-
ous layer, and b⃗i being the i-th layer’s

bias vector. Now we can calculate each
activation of the network, enabling us
to calculate the network output y⃗ using
the same method layer by layer, starting
with the input layer.

3.1 Activation Function

In this section, we briefly aim to un-
derstand why we need the previously
mentioned activation functions, denoted
as σ. We have already learned that a
neural network calculates an output vec-
tor y⃗ from a given input x⃗ by summing
up the product of weights and activa-
tion values. In the first layer, these ac-
tivation values are just our input val-
ues. Currently, our network calculates a
linear combination of input values and
parameters. However, in reality, if we
want to classify data or make predic-
tions, the relationships may not be lin-
ear at all. Therefore, we need to in-
troduce non-linearity to our network,
and this is where the activation function
comes into play.
As shown in the image below, there

are multiple activation functions, each
with different characteristics for various
problem domains. The sigmoid acti-
vation is often used to introduce non-
linearity to the network, and also ReLU

has proven to be very useful in practice.
The figure provides an overview of some
activation functions:

Later, when we delve into learning
how networks learn, we will discuss
gradients and how to compute them.
Two popular problems that might occur
when calculating gradients are the van-
ishing gradient problem and the explod-
ing gradient problem, caused by multi-
plying a lot of large values or a lot of
small values. The right choice of activa-
tion functions can help avoid these prob-
lems. However, it’s important to note
that these issues are beyond the scope
of this presentation.

4 Idea of Layers

Right now, we have incorporated mul-
tiple layers of activations in our net-
work. But why should we introduce this
extra complexity, and what does each
layer contribute? To grasp the concept
of multiple layers, consider the following
example: imagine we have a dataset of
images of handwritten digits. Since an
image is essentially a matrix of color val-
ues, let’s simplify it by thinking of each
pixel as a value between 0 and 1 (repre-

senting the brightness in grayscale). We
can loop through our matrix of pixel val-
ues to get an input vector for our net-
work.
Since this problem is a classification
task, we want the network to activate
the corresponding neuron of our 10 out-
put neurons based on the input image.
For instance, if we interpret our out-
put as a classification from 0 to 9, we
want the 10th neuron to be fully acti-

5

Algorithmic Gems Deep Learning Valentin Teutschbein

vated (having a high value), while all
others should remain inactive if we in-
put an image of a 9. The figure be-
low illustrates how we can use an image
from our dataset as a network input and
what our output layer should look like1.

For our human brain, this task is rel-
atively simple. But how can we make
a computer classify digits from a ma-
trix filled with brightness values? Let’s
break down this problem into simpler
components: first, identify certain ar-
eas of the image with low brightness,
a task similar to edge detection, which
was solved a long time ago. Now that
we know certain areas are dark and oth-
ers are bright, let’s group those areas to-
gether. We can check which connected
areas are activated and which ones are
not. For example, if the image shows
a 9, we expect certain area components
to be activated, like the circle on top,
while others, like the bottom-left cor-
ner, should remain inactive. By di-

viding our problem into multiple lev-
els of abstraction, we can easily solve
the digit recognition problem. Neural
networks achieve these levels of abstrac-
tion with multiple layers. In our exam-
ple, a neural network in the first layer
could find small connected pixel groups
that are highly activated, and in the
next layer, it could find groups of those
areas, and so on, until it determines
which parts of the image are activated
and which digit best fits those activated
areas. The different abstraction lev-
els are visualized in the picture below2:

This way, we can easily understand how
neural networks use their different lay-
ers. However, in reality, this process can
be quite different. Often, even in well-
trained neural networks, the layer struc-
ture may not seem intuitive to a human,
yet the network can still perform excep-
tionally well.

5 Making the Network Learn

Until now, we’ve explored how a neu-
ral network calculates an output vec-
tor from given input data using multiple
layers with randomly initialized param-
eters. However, why should this output
help us solve a prediction or classifica-
tion problem?

To make the network solve our prob-
lems, we need to teach it to learn the
desired output for a given input. Dur-

ing the training phase, we not only pass
the input data to the network but also
provide the expected output, allowing
the network to adjust its parameters.
This type of learning is called ’super-
vised learning.’

Now, we need a way to measure how
good the network output y⃗ is for a given
input vector x⃗ and expected output y⃗′.
We want to quantify the difference be-

1Source: https://www.youtube.com/watch?v=aircAruvnKk&ab_channel=3Blue1Brown
2Source: https://www.youtube.com/watch?v=aircAruvnKk&ab_channel=3Blue1Brown

6

https://www.youtube.com/watch?v=aircAruvnKk&ab_channel=3Blue1Brown
https://www.youtube.com/watch?v=aircAruvnKk&ab_channel=3Blue1Brown

Algorithmic Gems Deep Learning Valentin Teutschbein

tween y⃗ and y⃗′. In Deep Learning, we
call this measure the cost or loss. One
common way to define a cost function
C is by adding up the squared differ-
ences of corresponding vector entries, as
shown in the figure below:

This formulation results in a high cost
value C if the network output y⃗ is sig-
nificantly different from the expected
output y⃗′. Making the network learn is
equivalent to changing the value of C.

Task: What adjustments do we need to
make to C for a given sample? And how
do we want to get our C?

As we know, the cost value depends
on the network’s output and the tar-
get output for a given sample. From
forward propagation, we know that
our parameters, the weights and bi-
ases, determine the network output.
Since we can’t influence the network
output directly, we need to make ad-
justments to our weights and biases.
Our goal is to minimize the cost.

Task: How can we calculate adjust-
ments to our parameters to make our
network better at solving its task?

A naive solution would be to randomly
guess weights and biases for all input
samples, check if the average cost is
smaller than the previous cost, and re-
peat this for a fixed number of times

(episodes). In my implementation of
a neural network trained with ran-
domly guessing the parameters 3, I vi-
sualized this using an array with 1000
randomly generated sample values be-
tween 0 and 1. I used the function
f : [−1, 1] → R, x 7→ x2 to compute
the target values. The cost values for
an episode after the calculation for all
samples in 500 episodes are shown in
the figure below:

To verify the network’s output, I en-
tered the test cases x0 = 0.1, x1 =
0.5, x2 = −1, and x3 = 0.01, and I ob-
tained the corresponding outputs y0 ≈
0.03, y1 ≈ 0.226, y2 ≈ 0.019, and y3 ≈
0.025, which are close to the expected
results of x2. However, intuitively, ran-
domly guessing parameters doesn’t seem
to be a very precise or efficient optimiza-
tion method. In the plot above, we can
also observe that the cost values don’t
always improve, and even though the
cost seems to converge towards 0 in gen-
eral, there are still high cost values in
some of the later episodes. In the follow-
ing sections, we will cover how to actu-
ally calculate better parameters for our
network.

3Code: https://github.com/valteu/basic-neural-network - run main.py

7

https://github.com/valteu/basic-neural-network

Algorithmic Gems Deep Learning Valentin Teutschbein

6 Cost Function

6.1 Minimizing a Function

In the previous section, we learned
that optimizing our cost function will
train our neural network. Optimizing
the cost function simply means choosing
the right parameters. Since we want our
cost to be minimal, we must find a min-
imum in our function. The figure below
illustrates an example of a cost function
with two parameters:

We all know from school that finding

a minimum involves taking the deriva-
tive of our function, setting it equal to
0, and calculating the parameter. With
the second derivative, we can confirm if
our extreme point is indeed a minimum,
and we are done. The problem with
this approach is that although it works
well for low-dimensional functions, com-
puting the derivative set to 0 can be
very costly for multidimensional func-
tions. This is because for each parame-
ter we add to our network, we add one
dimension to C, and since each neuron
has a bias as a parameter and one weight
for each connection to the previous neu-
rons, we can easily end up with millions
of parameters and, therefore, millions of
dimensions for our cost function. But
how can we find a minimum in our mul-
tidimensional cost function? The next
section will cover a very popular algo-
rithm for solving exactly this problem.

6.2 Gradient Descent

In this section, we will learn how to
find a local minimum in a multidimen-
sional function using the gradient de-
scent algorithm. The idea of the al-
gorithm is that instead of computing
the minimum directly, which is com-
putationally very expensive, we calcu-
late the ’direction’ (meaning magnitude
and sign), our parameters need to be
changed, and then adjust our param-
eters accordingly to get a ’step closer’
to the minimum, repeating the process.
Let’s give you an intuition about how
this works using an anecdote: Imagine
you are hiking on a mountain without
paths and want to find the valley. But
because it is very foggy, you have no idea
of the direction to the valley. The gra-
dient descent algorithm suggests looking

at the slope you are standing on and tak-
ing a step downhill. Repeat this process
until you reach a valley. With this al-
gorithm, you are not guaranteed to find
the right valley, but at least you found
a local valley, as shown in the figure be-
low:

Now we need to find two important
parameters: the direction and the step
size. To get the direction, we can com-
pute the gradient vector of the cost func-

8

Algorithmic Gems Deep Learning Valentin Teutschbein

tion ∇C. This vector contains all par-
tial derivatives of the cost function with
respect to the corresponding parame-
ter. In the section on backpropagation,
we will learn how to compute this vec-
tor. This vector behaves similarly to the
derivative in one dimension. Since we
want to find the minimum of our cost
function, we need to go a step ’downhill,’
meaning we need to change our param-
eters in the negative gradient direction.
Now we only need to find the correct

step size for the parameter change. It
turns out the magnitude of the gradient
descent also corresponds to the ’steep-
ness’ of the current ’slope’, so we could
just use the magnitude of our gradient
vector. Unfortunately, this could cause
problems like overshooting, which we
will discuss later on. For now, it is im-
portant to know that choosing a good
step size matters and can be achieved
using step size approximations. In this
presentation, I want to introduce the
Armijo step size condition: Let f
be a continuous function Rn → R, let
x ∈ Rn be a vector, and d = −∇f(x)
be the negative gradient vector. To find
an appropriate step from f(x) to min-
imize the function, we use the Armijo
step size condition, which chooses a step
size t = αl as the largest value with
l ∈ N such that:

f(x+ αld) ≤ f(x) + σαl(∇f(x)T)d

for two constants σ ∈]0, 1[, α ∈]0, 1[.
Since this condition looks pretty ab-

stract and might be hard to understand
initially, let’s break it down step by step.
Imagine we have our function f as de-
scribed and are currently at the point
x from where we want to take ’a step
down.’ With d, we already know the
direction we want to go. So the only
thing left is to find an appropriate step
size t. In the following plot, you can
see what the condition f(x + αld) ≤
f(x) + σαl(∇f(x)T)d means:

So, we choose our next step to be
so long that the new function value
will be smaller or equal to some value
f(x)+σαl(∇f(x)T)d (green line) and in
the direction d. Loosely speaking, this
can be translated to ’if you want to take
a large step, you should improve by a
lot’, because the f(x) + σαl(∇f(x)T)d
value decreases with larger step sizes.

Now we have a direction and a way of
finding a good step size. Using gradient
descent, we can finally start training our
neural network. But before we do this,
we need to address any doubts about
whether gradient descent really finds a
local minimum!

6.2.1 Proof of Gradient Descent Convergence

To prove the convergence of gradient descent, we at first define our algorithm for
calculating it4:
Algorithm
Let f ∈ C(Rn,R)

1.1 Choose start vector: x0 ∈ Rn, σ ∈]0, 1[, α ∈]0, 1[

4Source of proof and algorithm: https://www.math.uni-hamburg.de/home/oberle/skript
e/optimierung/optim.pdf, pages 31 and 32

9

https://www.math.uni-hamburg.de/home/oberle/skripte/optimierung/optim.pdf
https://www.math.uni-hamburg.de/home/oberle/skripte/optimierung/optim.pdf

Algorithmic Gems Deep Learning Valentin Teutschbein

1.2 If ||∇f(xk)|| = 0 STOP

(i) choose direction dk = −∇f(xk)

(ii) choose step size tk as the largest value tk = αl, l = 0, 1, 2, . . . with

f(xk + αldk) ≤ f(xk) + σαl(∇f(xk)T)dk

(iii) xk+1 := xk + tkd
k, k := k + 1 goto (1.2)

This Algorithm really is just a formal way of describing what we just did in the
previous sections, with the added parameter k for the current iteration.
Now we want to prove that this algorithm defines a sequence xk such that for
the limit x∗ of f the gradient of the function ∇f(x∗) = 0, which means that our
algorithm finds a local minimum of f .
Proof
This proof is a contraciction proof with the Assumption, that there exists a sub-
sequence (xkj) of (xk) such that xkj → x∗ as j → ∞, but ∇f(x∗) ̸= 0.
Since the sequence (f(xk)) monotonically decreases by construction, the continuity
of f implies f(xk) → f(x∗). Thus, according to the Algorithm,

f(xk + αldk) ≤ f(xk) + σαl(∇f(xk))Tdk since f(xk+1) = f(xk + αldk)

−σαl(∇f(xk))Tdk ≤ f(xk)− f(xk+1) since dk = −∇f(xk)

σtk∥∇f(xk)∥2 ≤ f(xk)− f(xk+1)

So tkj → 0 as j → ∞
So for sufficiently large j and k = kj, it can be assumed that tk < 1. Till here, we
basically proved, that our step size will eventually converge towards 0.

Figure 2: Thus our converging sequence can be imagined as shown in the image

Since this is a contradiction proof, we just need to break the rules of our known
math applying just those rules to know that the assumption must have been false.
In the next steps, we will do exactly this using a too large step size. That makes
the next steps of the proof pretty unintuitive, but they allow us to prove what we
want to achieve quite easily.
Using the Armijo step size control, we have

f(xk + αlk−1dk) > f(xk) + σαlk−1∇f(xk)Tdk,

10

Algorithmic Gems Deep Learning Valentin Teutschbein

or equivalently,
f(xk + αlk−1dk)− f(xk)

αlk−1 · dk
> σ∇f(xk)T .

Now, applying the mean value theorem with an intermediate point zk = xk +
Θkα

lk−1dk, Θk ∈ (0, 1).
We are using the mean value theorem, which states that for a differentiable func-
tion on [a, b] there exists a c such that: f ′(c) = f(b)−f(a)

b−a
. In our case we have

a = xk + αlk−1dk and b = xk, so our c = zk we created must exist. Now, when
applying the theorem and multiplying both sides with dk, we get:

∇f(zk)Tdk > σ∇f(xk)Tdk.

For j → ∞, it follows that αlk−1 = tk/α → 0 and dk → −∇f(x∗) ̸= 0. Thus,
zk → x∗, and also in the limit:

−∥∇f(x∗)∥2 ≥ −σ∥∇f(x∗)∥2,

which contradicts the assumption 0 < σ < 1.
Now we have successfully proved, that using our gradient descent algorithm, we
can find a local minimum for each continous function f : Rn → R with n ∈ N.

6.3 Backpropagation

To this point, we proved that with
gradient descent and by choosing a
good step size, we can minimize the
cost function of the neural network and
thus optimize the network parameters.
But how can we actually compute our
gradient vectors? The algorithm do-
ing that is called backpropagation. To
understand how it works, let’s con-
sider a very simple neural network like
the one shown in the picture below:

The figure shows a simple Neural Net-
work with the activations α, weights
w, biases b and target network output
y⃗′. It is important to know, that doing
backpropagation means to first input a
sample and then do forward propaga-
tion. Otherwise, we would not have a
network output and no cost to minimize.
As a consequence of that, all parameters
and activations are just numbers right

now.
As we learned earlier, the cost of the
network for a given sample C is cal-
culated as (αL − y⃗′). So how can we
compute the gradient vector of the cost
∇C? As we know, this vector contains
all partial derivatives of the parameters
with respect to the cost function. In
fact from forward propagation we know,
that our αL depends on the weighted
(w3) previous activation (αL−1) plus a
bias (b3) passed into some activation
function σ, and it is calculated using
σ(w3α

L−1 + b3). For the sake simplicity,
let’s call zL = w3α

L−1 + b3 the pre-
activated value. We can draw those de-
pendencies using a tree-like structure,
as you can see in the next picture:

11

Algorithmic Gems Deep Learning Valentin Teutschbein

To compute the influence the parame-
ter w3 has on the cost function, we need
to calculate ∂C

∂w3
. With a look at the

dependency tree, we can see that this
term depends on the influence that w3

has to zL, which itself depends on zl’s
influence on αL which finally depends on
αL’s influence on C. As we know, the
influence of a parameter to a function
can be described as the partial deriva-
tive of this parameter to the function,
so we get: ∂C

∂w3
= ∂zL

∂w3
· ∂αL

∂zL
· ∂C
∂αL . Now

let’s compute those terms:
∂zL

∂w3
= αL−1,

∂αL

∂zL
= σ(zL)

∂C
∂αL = 2(αL−1)
Using simple rules of derivative calcula-
tions. So we get: ∂C

∂w3
= αL−1 · σ(zL) ·

2(αL−1)

Task:
Now how to calculate ∂C

∂b3

Computing the influence b3 has to the
cost function ∂C

∂b3
is very similar to ∂C

∂w3
,

you just have to calculate ∂zL

∂b3
instead of

∂zL

∂w3
, and ∂zL

∂b3
= 1.

So we get: ∂C
∂b3

= 1 ·σ(zL) ·2(αL−1). The
rule of ’splitting’ the partial derivatives
we used is called the chain rule, and us-
ing it, we can now easily compute the
influences of each parameter of the last
layer. Remember: This parameter is
just one part of the gradient vector. So
in reality, we need to calculate those
influences for all parameters. This can
easily be done recursively, starting at
the output layer of the network until we
reach the input layer. That is why the
algorithm is called backpropagation: It
calculates the gradient vector from the
back to the front of the network.
So all in all in this section, we learned
how to calculate the gradient vector of
our network for a given training example
using the backpropagation algorithm.

7 Training the Network

After calculating the gradient vec-
tors of our network for one sample, we
now want to actually train our network.
Before we do this, I want to clarify
the meaning of samples, batches, and
episodes:
The neural network uses training

data, which we call samples. In our pre-
vious example of recognizing handwrit-
ten digits, a sample would be a single
image of a handwritten digit. A batch,
on the other hand, is a (most of the time,
randomly chosen) subset of the samples

used to train the network, not all sam-
ples at the same time. An episode, on
the other hand, includes the training of
the network with all samples. This is
usually done multiple times, so we have
multiple episodes. In this presentation,
we just covered the gradient descent op-
timization algorithm, which does not
use batches. Still, there are many popu-
lar algorithms that utilize batches, so it
is important to know what batches are.
Now we will finally learn how to train a
neural network.

12

Algorithmic Gems Deep Learning Valentin Teutschbein

7.1 Learning Algorithm

We now know how to calculate the
network output for a given sample and
how to compute the desired changes to
the parameters for this sample. Now,
the basic idea of training the network
is to calculate this gradient vector for
each sample we have and then update
all the parameters by subtracting the
average of the corresponding gradient

values. Essentially, we find the average
of all desired changes to the parameters
for all samples. After that is done, we
repeat the procedure until our network
is trained well enough. The number of
episodes can be hard-coded or related
to the cost value. So, the learning al-
gorithm can generally be described as
follows:

∇ C all = 0⃗
FOR EACH EPISODE:

FOR EACH S ∈ SAMPLES :
NETWORK.FORWARD(S)

∇ C S = NETWORK.BACKWARD()

∇ C all + = C S
NETWORK.UPDATE_PARAMETERS(η, ∇ C all)

Thereby, the NETWORK.UPDATE PARAMETERS function subtracts from each
parameter its corresponding gradient vector value divided by the amount of sam-
ples (so we have the average desired change direction) times η. But why do we
need the parameter η? This will be covered in the next section.

7.2 Learning Rate

As we know from the gradient de-
scent algorithm, updating our param-
eters just using the gradient vector
can lead our optimization to over-
shoot, as illustrated in the figure below5.

That is why we used a step size deter-
mined by the Armijo condition to pre-
vent our optimization from overshoot-
ing. However, besides overshooting,
there is also the opposite problem: If
η is too small, our optimization will be
very slow because we will always im-

prove only by a small amount, as shown
below6:

There also exist conditions preventing
our step size from being too small, which
will not be covered in this presentation.
In neural networks, we call this step
size the learning rate since it determines
how much our network should learn each
episode. You should just keep in mind
that choosing a good learning rate is
key to successfully training a neural net-
work.

5Source: https://www.kdnuggets.com/2020/05/5-concepts-gradient-descent-cost-fun
ction.html

6Source: Same as above

13

https://www.kdnuggets.com/2020/05/5-concepts-gradient-descent-cost-function.html
https://www.kdnuggets.com/2020/05/5-concepts-gradient-descent-cost-function.html

Algorithmic Gems Deep Learning Valentin Teutschbein

7.3 Demonstration of training a neural network

Now, with the knowledge we gained
about optimizing a neural network using
gradient descent, it is time to implement
and test it7. Within only 50 episodes,
our cost decreased significantly to just
≈ 0.0003, as shown on the plot below:

The test samples x0 = 0.1, x1 =
0.5, x2 = −1, and x3 = 0.01 produced
pretty good results: y0 ≈ 0.03, y1 ≈
0.23, y2 ≈ 0.03, and y3 ≈ 0.03. These
results are quite similar to the results
we got when randomizing our weights

and biases. However, we achieved this
in just 50 episodes. If we were to deter-
mine our learning rate using the Armijo
condition, these outputs would probably
look much better after more episodes.
So yes, the neural network works! But
what did we do? We just implemented
f(x) = x2 in a very complicated way
with an error and a long runtime.

Task:
So why did we do all of this?

The answer lies in the flexibility of our
network. If we don’t know how our
samples were generated or measured,
we can still construct a function that
guesses them: Our neural network. We
can also use our network for classifica-
tion problems. So if we already know
how to calculate an output value, we
should, for sure, not use our neural net-
work to do this. But if we don’t, we
can guess this function pretty well de-
pending on the available data using our
network.

7.4 Further Thoughts

In the gradient descent algorithm and
its convergence proof, I mentioned and
proved that this algorithm guarantees
us to find a local minimum.
Task:
But why would finding a local minimum
be enough? Couldn’t this have an arbi-
trarily high cost?

To answer this question, we should re-
member the complexity of the cost func-
tion. Even though in this presentation
we graphed this function with a 1 or 2
dimensional input mapping to one dif-
ferent dimension, in reality, our network
has one dimension per parameter. So we
can easily get a cost function mapping a

1, 000, 000, 000-th or higher-dimensional
input to our cost value. But what does
that change? Well, the intuition this
gives is that since a minimum is just
a place where every input dimension
cost function has a minimum, adding
more dimensions makes it easier to have
at least one dimension without a min-
imum at this point, which allows us
to optimize alongside this dimension.
In reality, we are still not guaranteed
to find a global minimum; it get’s just
more and more likely to not ’get stuck’
in a local one.
If you remember the idea of batch op-
timizing, this can also be a way of ’es-

7Code: https://github.com/valteu/basic-neural-network - comment the line
’n.train random’ and uncomment ’n.train’; run main.py

14

https://github.com/valteu/basic-neural-network

Algorithmic Gems Deep Learning Valentin Teutschbein

caping’ a local minimum since, with
optimizing only for some random sam-
ples each time, we get randomness and
don’t always follow the straightest path
’downhill’ of our cost function.
Besides the optimization of neural net-
works, there are a lot of design choices
to do when building a neural network,
for example, the number of layers.

Task:
Now the question arises whether more
layers are generally mathematically bet-
ter without considering the extra train-
ing time it would cause?

Solving this question formally is quite
hard, so I will give you just an intuition:

Imagine a small neural network that is
trained pretty well. The probability
that such a well-trained network is al-
ready a subset of a large neural network
obviously increases with a larger net-
work size. So in this case, we just need
to deactivate all the other neurons, and
thus within just a few episodes, we can
solve the given problem easily. So more
layers will mathematically be pretty
probable to solve our problem within
fewer episodes. In reality, of course, the
time to train each episode and the stor-
age space of a neural network increase
with the network size, so there exists a
trade-off.

8 Conclusion

In this comprehensive exploration of
neural networks, we delved into the fun-
damental concepts that form the back-
bone of these powerful machine learn-
ing models. From the basic building
blocks like neurons and layers to the
intricate details of activation functions,
backpropagation, and gradient descent,
we have navigated through the intricate
terrain of neural network architecture
and training.
Understanding the importance of

non-linearity introduced by activation
functions, the role of multiple layers in
abstraction, and the nuances of train-
ing through the supervised learning
paradigm provided insights into the in-
ner workings of neural networks. We ex-
plored the significance of the cost func-
tion, its minimization through gradient
descent, and the crucial role played by
the learning rate in determining the con-
vergence of the optimization process.

As we ventured into the practical im-
plementation and training of a neural
network, we witnessed the interplay of
concepts like batches, episodes, and the
iterative adjustment of parameters to
optimize for a given task. The demon-
stration showcased the network’s ability
to learn and adapt, highlighting the flex-
ibility that makes neural networks suit-
able for a wide array of problems.
In the final reflections, we pondered

the implications of finding local minima
in high-dimensional spaces and consid-
ered the trade-offs associated with the
design choices in neural network archi-
tecture. The journey through this in-
tricate landscape aimed to equip you
with a foundational understanding of
neural networks, empowering you to ex-
plore further and harness the capabili-
ties of this transformative field in ma-
chine learning.

15

	Table of Contents
	Introduction
	Overview of a Network

	Forward Propagation
	Activation Function

	Idea of Layers
	Making the Network Learn
	Cost Function
	Minimizing a Function
	Gradient Descent
	Proof of Gradient Descent Convergence

	Backpropagation

	Training the Network
	Learning Algorithm
	Learning Rate
	Demonstration of training a neural network
	Further Thoughts

	Conclusion

